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INTRODUCTION 

TKE PULSE ‘flash’ method [I] is actually the most popular 
method of measuring the thermal diffusivity of solids, 
especially at high temperatures. In this method, the front 
face of a small disc-shaped specimen is subjected to a very 
short burst of radiant energy coming from either a laser or 
a xenon flash lamp. The resulting temperature rise of the rear 
surface of the specimen is recorded and the value of the 
thermal diffusivity is computed from this temperature vs time 
data. 

There exist several original methods for data reduction in 
the Aash method. The first group includes a method in which 
the thermal diffusivity is calculated using one or a few charac- 
teristic experimental points [I, 21. In the second group all the 
experimental points of temperature vs time data (in par- 
ticular their rising part) are used for diffusivity deter- 
mination. Such methods are based on fitting the experimental 
data by theoretical curve by means of a least square pro- 
cedure [3-51. In all the mentioned methods the precision 
of results depends on satisfying the conditions, which are 
assumed in the ideal theoretical model of the flash method [I] 
(heat pulse is uniform and instantaneous ; sample is opaque, 
homogeneous, and thermally insulated ; thermal properties 
are temperature independent). 

In the real case heat transfer between the sample and 
its environment is usually unavoidable, especially for high 
temperature measurements or for materials with poor con- 
ductivity. Several original methods were proposed which 
take into account this effect. In refs. [6-9] the thermal diffu- 
sivity determined from the ideal condition model is corrected 
by multiplying with the appropriate numerical factor, 
depending on heat losses. Another way is used in methods 
based on the general mathematical model [IO] obtained as a 
solution to a two-dimensional heat conduction equation with 
the heat losses from the whole sample surface. In those 
methods the thermal diffusivity is determined either by means 
of several particular points of the temperature vs time data 
[ 10, 111 or using the temporal moments of the defined tem- 
perature interval of the rising part of the experimental curve 
[IO, 121. An original way to eliminate the heat loss effect, 
described in ref. f13], is based on the knowledge, that rear 
surface temperature history is less perturbed as time is nearer 
to the time origin (time of gash). Thermal di~usivity is 
obtained by extrapolating the time evolution of exper- 
imentally gained values of ‘apparent’ thermal diffusivity to 
time 7xfo. 

In this paper the data reduction method is presented, which 
eliminates the effect of heat losses using the procedure of 
extrapolation, similar to that in ref. [13]. Apparent values of 
thermal diffusivity are calculated using the so-called ‘logar- 
ithmic’ method [5]. Results of testing and comparison with 
other existing methods are also given. 

PRINCIPLE OF METHOD 

The logarithmic method [S] for thermal diffusivity deter- 
mination is based on the relation 

In (t’sZT) = In[2T,,,(c~‘!nr)’ ‘I--e2/4zt (1) 

where f is time, T = 7(e, 0 the temperature of the rear fact 
of the sample. (’ the sample thickness. ?; the thermal diffusivity. 
and &, the adiabatic limit temperature of the sample after 
the pulse. Equation (1) is an approximation of the formula, 
derived from the one-dimensional heat conduction equation 
using Laplace transformation and can be used over the time 
region in which the condition T/T,,, < 0.9 is fulfilled. 

In the ideal case the plot In (t’:‘T) vs I/t is a straight line, 
and the thermal diffusivity c( is calculated by means of the 
slope K of this line using the formula 

a = -e’j4K (2) 

whrch IS independent of T,,,. 
The adiabatic limit temperature rii, can be calculated 

through the point of intersection Q of the regression line 
with the axis of ordinates. According to equation (1) we have 

r,,, = (~a) ’ ’ exp (Q),&. (3) 

In the real case, when the heat transfer between the sample 
and its environment is non-zero, the experimental curve 
In (f”‘7’) vs l/t is distorted due to the effect of heat losses. 
Therefore, the slope K and the point of intersection Q of the 
regression line with the axis of ordinates became a function 
of the time noint. around which the linear regression is used 
(K = K(t) and Q = Q(t)). The apparent diffisivity a(t), and 
apparent limit temperature T,,,(r) can be calculated using 
equations (2) and (!3), respectively. 

In the method presented the values of thermal diffusivity 
and adiabatic limit temperature are specified by extra- 
polating time evolutions of the apparent diffusivity and 
apparent limit temperature, respectively, towards the initial 
time. From this point of view. our method corresponds 
to the procedure described in ref. [13]. However, in our 
algorithm the apparent diffusivity is independent of the 
apparent limit temperature and, consequently. the thermal 
diffusivity is independent of the adiabatic limit temperature. 
In addition, our method enables one to determine the value 
of the adiabatic limit temperature when using the analogical 
procedure as in the case of thermal diffusivity. 

We see that the procedure presented transforms the prob- 
lem of correction to the effect of heat Iosses to a mathematical 
problem of regression analysis. 

In order to find the value of thermal diffusivity from the 
time evolution of the apparent diffusivity the polynomial 
regression of second order is used 

U(f) = CQtr$ (4) 
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NOMENCLATURE 

(’ sample thickness T Ihrn adiabatic limit temperature 
K slope of regression line r,,,(t) apparent limit temperature 

K(t) apparent slope T V.I. maximal temperature rise. 

Q intersection of regression line with axis of 
ordinates 

Q(t) apparent intersection Greek symbols 
R sample radius G( thermal diffusivity 
I time u(t) apparent diffusivity 
T tcmperaturc x,~. 51?, /j,,. /j,. /Tz constants. 

which approximates well the function a(t) for time intervals 
less than a quarter of the time of the temperature rise in the 
transient state after the pulse. For time intervals which exceed 
this one the higher term of the polynomial regression should 
be taken in equation (4). 

For the time evolution of the apparent limit temperature 
we found the fitting formula 

T,,,(t) = BO+BI exp (-W). (5) 

The values of the constants G(,,. x2. /I,). p,, and fi2 are calculated 
by the standard least square method. Finally, the thermal 
diffusivity is equal to Q, and the adiabatic limit temperature 

Po+Br. 
The sensitivity of this method to the choice of the time 

range for computing of the apparent diffusivity and the 
apparent limit temperature can be decreased when using the 
weighted regression procedure. Every point a(t) (or T,,,(f)) 
can be taken into account with the weight, which corresponds 
to this uncertainty. The weight functions of the apparent 
diffusivity and the apparent limit temperature can be cal- 
culated by using the standard mathematical procedures for 
least square fitting. 

Here we note that the determination of thermal diffusivity 
as a mean value of the apparent diffusivity is similar to the 
algorithm used in ref. [5]. 

VERIFICATION 

The method presented was first tested on the set of theor- 
etical temperature vs time curves, some of which are shown in 
Fig. 1. These data were obtained using the two-dimensional 
model of the flash method [IO], in which the heat losses are 

0,6- 

.E 
I= 

2 
0.4 - 

0.2 - 

FIG. 1. Rear face temperature vs time evolution of samples FIG. 3. Time evolution of apparent limit temperature T,,,(t) 
with various heat losses (Nos. l-5), and adiabatic sample and regression curves fi,, +/?, exp (- fi2t) for simulations 

(No. 6). Nos. l-5. 

governed by Biot numbers H,, HZ, and H3 related to the 
front, rear, and lateral faces of the disc sample with radius 
R. 

The time evolution of the apparent diffusivity and the 
apparent limit temperature are shown in Figs. 2 and 3, respec- 
tively. Solid lines represent regression curves (equations (4) 
and (5), respectively). The numbers associated with the 
curves indicate the correspondence with curves shown in 
Fig. I. 

The results of our simulation (see Table I) can be sum- 
marized as follows, 

I 
0 0.5 1 1.5 2 

t/s 

FIG. 2. Time evolution of apparent diffusivity u(t) and 
regression parabolas CX,, +ccztZ for simulations Nos. l-5. 
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Table 1. Results of simulation. The correct values of a and r,,, are equal to I 

1 2.1 2.1 2.1 1.5 a.997 -0.26 0.912 -8.8 
2 1 I I 1.1 0.993 -0.66 i .003 0.3 
3 1.01 1.01 1.01 5 1.002 0.16 0.977 -2.3 
4 0.51 0.51 0.01 2 1.001 0.08 0.993 -0.7 
5 0.2 0.2 0.2 1.5 I.001 0.08 0.99 -1 

.-_.. _-.____.. . . ~-. 

Table 2. Ex~rimental results and comparison with other 
methods (values are in IO- ’ m* s ‘) 

__ _.. 

Method Ceramic Plaster 

Parker ef al. [I] 8.256 
Takahashi et al. [S] 7.361 
Degiovanni et al. [I t] : 

x1,3 6.751 
‘XI,2 6.652 
@2,3 6.606 

Degiovanni et Laurent [ 121 6.933 
Balageas [ 131 6.863 
Present method 6.735 

I.988 
1.568 

1.429 
I.467 
1.502 
1.473 
1.474 
I .4?4 

(1) In the range of T,,,/T,,,,, < 5, where r,,, is the maximal 
value of the temperature rise of the rear surface after the pulse 
(in tested interval 0.5 < R/e < 5), the thermal diffusivity can 
be evaluated with precision better than 0.7%. 

(2) In the range of T,,,/T,,, < 3 the adiabatic limit tem- 
perature can be evaluated with precision better than 5%, and 
the relative error will not exceed 10% when T,,,/T,,,,, < 5. 

The second test of this data reduction method was per- 
formed on some real experimental data gained from two 
samples. The comparison ofour results with the results deter- 
mined by other methods is given in Table 2. This table 
shows that the precision of the values obtained by the 
present method is comparable with other special data 
reduction methods [I l--13]. 

CONCLUSION 

The main advantage of the present data reduction method 
consists of the fact that the thermal diffusivity is determined 
without the knowledge of T,,, (or T,,,,,), and a reliable result 
is obtained even in the case when the heat losses from a 
sample are considerably high. This is why any section of the 
rising part of the temperature vs time curve can be used for 
the data reduction. 

This method can also be applied to very noisy signals. 
provided that the ~rturbations have a Gaussian dis- 
tribution. 

The limitations of the use of our method arise from its 
sensitivity to the distortions of earlier parts of the exper- 
imental curve due to such effects as. e.g. finite pulse time 

effect, or inertia of temperature sensors. The uncertainty of 
the results increased when the Iow frequency noise occurred. 

The method presented may have a large field of application 
in the measurements of low conductivity materials, especially 
at high temperatures. 
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